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Abstract: - The intention of this paper is to investigate the boundary roughness of a mounted obstacle which is 

inserted into an incompressible, external and viscous flow field of a Newtonian fluid. In particular, the present 

study focuses on the cross – sectional area of the obstacle, which is assumed to be a non deformable body (rigid 

object) with a predefined shape of random roughness. For facility reasons and without violating the generality, 

one may select the cross – section of the body which contains its center of gravity and is perpendicular to the 

main flow direction. The boundary of this cross – sectional area is mathematically simulated as the polygonal 

path of the length of a single – valued continuous function. Evidently, this function should be of bounded 

variation. The novelty of this work is that the formulation of the random roughness of the boundary has been 

carried out in a deterministic manner. 
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1 Introduction 

In the current literature, the irregular boundaries are 

mostly modeled as spatially homogenous random 

processes. However, the spatial variations are many 

times very small for computational grids [1]. 

Nonetheless, the majority of geometric models 

which currently appear in literature and are based on 

an Analytical or Differential Geometry viewpoint, 

have not included any particular deterministic 

formulation for the roughness of the circumstantial 

boundaries [2, 3, 4, 5]. On the other hand, referring 

to the influence of the roughness of  an  arbitrary  

surface,  one may report  that  any  surface  which  

is  inserted  into  an  external  viscous  flow  is   

called  “smooth”,  when   its   roughness   is  less   

than the averaging thickness of the viscous sub 

layer, which is evidently at least the 1%  of  the  

thickness  of  the  self  –  preserving turbulent 

boundary layer [6,7]. In the meanwhile, during 

conceptual design process of aircrafts or some 

special architectural forms, the rigid body can be 

mathematically simulated by creating a stack of 

cross sections and then lofting in between these 

sections to create a smooth shape [8, 9, 10]. In such 

cases, the boundaries of these cross sectional areas 

are not self – intersecting or continuously 

constructing curves [11].  In the past years, there is a 

lot of recent research work carried out for the 

investigation of boundary roughness concerning 

mounted and/or rotated obstacles. In Ref. [12] a 

unified approach to time periodic incompressible 

viscous fluid flow problems is presented. Besides, a 

considerable study on the influence of surface 

roughness on shear viscosity was performed in Ref. 

[13]. Moreover, in Ref. [14] a comprehensive 

investigation into how the boundary roughness 

affects a fluid flow through a corrugated pipe is 

presented, whereas for a detailed study on the 

influence of surface roughness on a separating 

turbulent boundary layer one may refer to Ref [15]. 

Further, in Ref. [16] an experimental study of 

rotating – disk boundary layer flow with surface 

roughness was carried out. In this context, it was 

shown that if the surface is sufficiently rough, 

laminar–turbulent transition can occur via a 

convectively unstable route ahead of the onset of 

absolute instability.  Finally, in Ref. [17] an 

applicable investigation on the influence of rotating 

wheels, ride height and wheelhouse geometry on the 

drag coefficient of electric vehicle was carried out 
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by means of Computational Fluid Dynamics (CFD) 

techniques.  The objective of the present work aims 

at examining the roughness of the boundary of a 

mounted obstacle inserted for an incompressible 

viscous flow field. The mathematical formalism that 

we shall develop here in order to carry out a 

deterministic approximation of the roughness of a 

two – dimensional boundary, premises beforehand 

two fundamental assumptions which concern the 

geometrical features of this boundary. In particular, 

the rough boundary of the cross sectional area of the 

mounted obstacle, due to its random roughness, has 

not been considered as: 

i) Piece – wise smooth and parameterized surface 

from Differential Geometry standpoint. 

ii) Smooth surface from Fluid Dynamics standpoint. 

In this framework, the boundary has been simulated 

as the polygonal path of the length of a single – 

valued continuous function. Evidently, this function 

should be assumed beforehand to be of bounded 

variation. The novelty of this work is that the 

formulation of the random roughness of the 

boundary has been carried out by means of a 

deterministic method and thus does not involve 

stochastic random processes. 

2 Problem Formulation 

2.1 Towards an analytical simulation of 

boundary geometry 

It is known that for any type of external viscous 

flow patterns, along the boundary, which marginally 

constitutes a stream surface, the following statement 

holds [6,18] 

0 zyx VVV    

0 zyx VVV                                                  (1)                                                                                   

Thus, taking into consideration the well-known 

relationship which describes the network of the 

streamlines according to Eulerian formalism for the 

description of a flow field [18,19], one may obtain 

the following relationship:  

 
zyxzyx VVV

dzdydx

V

dz

V

dy

V

dx




                   (2)                                                                                                                         

Eqns. (1) and (2) can be combined to yield   

ctzyx                                                  (3)                                                                    

Moreover, according to eqn. (2) one may deduce 

that 

 ctzdzydyxdx  

 ctdzdydx 222

2

1

2

1

2

1
 

Qzyx  222                                            (4)                                                                                                                        

where 
*

RQ  

Thus,   given a specific value of the  parameter  Q , 

one  may  also derive the  equation of  the  

corresponding osculating  sphere  for  an arbitrary  

point  lying on  the boundary of the mounted 

obstacle.     

In the meanwhile, it is known that any two – 

dimensional curve the tangent lines of which have 

geometric properties independent of the 

circumstantial contact point, leads to an Ordinary 

Differential Equation (ODE) of Clairaut type [20, 

21].    It is well – known that the complete solution 

of this ODE constitutes a single – parameter bundle 

of lines [20,21]. Obviously, these lines have the 

same geometric features with the tangent lines of the 

aforementioned curve. In this context, one may also 

deduce that the envelope of this bundle of lines 

coincides with any level curve of the surface – area 

of the mounded obstacle for each seperate value of 

the parameter.  In a motionless rectangular Cartesian 

frame of reference, the coordinates of any tangent 

line are given as: )',
'

( xyy
y

y
x   

Hence the differential form of the curve is: 

 Rxyy
y

y
x  ,'

'
           

 ')'('' 2 yyxyyxy   

1'

'
'



y

y
xyy


          (5)                                                                                                                                   

where cxy   
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The complete solution of eqn. (5) is expressed in the 

following single – parameter representation [20, 

21]: 




 1,
1
c

c

c
cxy


 

  02  ycxyxc    (6)                                                                                                             

where 1c  

Apparently, eqn. (6) constitutes a single – parameter 

family of lines.  

Consequently, the envelope of eqn. (6) can be 

estimated as 

   04
2

xyxy   

   xyxy 4
2

  

yxxy 2   

                                               

yxxy 2   

 yxxy 2  

                                                                                                                                                        

 yxxy 2  

                                                                                                               

 yx              (7)                                                                                                                         

 

 yx                (8)                                                                                                                       

  

 yx               (9)                                                                                                                      

Evidently, the mathematical disjunction consisting 

of eqns. (7)   (8)   (19) is equivalent to eqn. (6). 

Besides, eqns. (7), (8) and (9) can be solved for the 

variable y , resulting in the following mathematical 

disjunction: 

 

 2

xy       (10)                                                                                                                                  

  

 2

xy             (11)                                                                                                                           

2.2 Towards an analytical formulation of the     

     boundary roughness 

Suggestively, let us select eqn. (10) letting the 

variable x  lie over an arbitrary interval ],[ ba .  

Then we shall evaluate the polygonal approximation 

of the length of this function. 

In this context, to formulate the roughness of any 

possible curve motivated by eqn. (10) from the 

differential point of view, we need to estimate the 

polygonal approximations of the lengths of these 

functions with respect to an arbitrary partition p of 

the interval ],[ ba  taking also into account that these 

functions are of bounded variation in their domain 

of definition [22]. Hence, we can write out: 

 


 
n

n

nnnn ffpfL
1

2/1

1

2

1 ))()(()(),(   (12)                                                                                                                                                                          

Nnbap n  },...{ 10   

Apparently, the following mathematical conjunction 

holds: 

),(),(min pfVpfL                                   (13)                                                                                                                       

  

)(),(),(max abpfVpfL                      (14)                                                                                                         

where 





n

n

nn ffpfV
1

1)()(),(    (15)                                             

with Nnbap n  },...{ 10    


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Evidently when the cardinality of this partition 

increases, also the roughness of the boundary does. 

On the other hand, it is also known [22, 23] that any 

finite summation can be represented equivalently as 

the Riemann - Stieltjes integral of an appropriate 

single – valued function, which cannot be obtained 

in a direct manner. In this context, one may proceed 

as follows:  

Let  Rh ),0[:  be a continuous single valued 

function.  

Then for every interval: ],0[ x : 1x  the following 

relationship holds: 

 

  


xx

n

tdthnh
01

)()(                              (16)                                                                                                                         

Hence one may request the validity of the following 

equality: 

 
x

tdthpfL
0

)(),(                                  (17)                                                                                                                           

On the other hand, it is known from Calculus that 

referring to the integer part of any real variable the 

following statements hold: 

0][10  tt       (18A1)                                                                                                                        

1][21  tt         (18A2)                                                                                                                        

0]2[32  tt     (18A3)                                                                                                                      

1]2[43  tt     (18A4)                                                                                                                   

…………… 

…………… 

 1 [x] 2  [x] t 01][x][t     (18Ax-1)                                                                                                 

 [x]t1[x] 11][x][t      (18Ax)                                                                                                       

Consequently, over the interval )2,0[  one may infer  

)(][ tHt                                                          (19)                                                                                                                                                              

where )(tH  denotes the Heaviside step function, 

which is also known as the Unit Step Function.     

Evidently the following relationship holds, 

 ][,0]2,0[ x                                                (19A)                                                                                                                                           

In this framework, one may proceed in the same 

manner respectively, over the next intervals 

 [x] 2, - [x] ,  ... [[2,4], . 

Besides, by differentiating eqn. (19) withy respect 

to t , it implies that 

)(][ tdHtd    (20)                                                                                                                                        

Next, since Heaviside function satisfies Dirichlet’s 

principles, it can be expanded in a Fourier series as 

follows  




 




1 12

)12sin(2

2

1
)(

k k

tk
tH


 (21)                                                                            

Apparently, the above approximation holds over the 

interval    [-  and also at   t  and at  t  

the corresponding series converges to
2

1
.  

Thus, one may deduce that this approximation holds 

if and only if  xt  

Nonetheless, the above restriction does not violate 

the proposed mathematical formalism to estimate 

the boundary roughness.    

In continuing, a differentiation of eqn. (21) with 

respect to t yields 

  dttktttdH )12(cos...3coscos
2

)( 


 (22)                                                                                  

Eqn. (22) and eqn. (20) can be combined with to 

yield  

  dttktttd )12(cos...3coscos
2

][ 


 (23)                                                                               

3 Problem Solution 

Now, for facility reasons one may additionally 

assume that the continuous function )(th  which 

first appeared in eqn. (16) is analytical over its 

domain of definition, and therefore it can be 

expanded in Taylor series centred at any point of 

this domain. 
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Hence, this aforementioned function can be 

represented by an Nth – degree polynomial )(xP  

such that 

)0()0(

)0()0(

)()( nn Ph

Ph







                      (23)                                                                          

*Nn  

In this framework, eqn. (17), eqn. (22) and eqn. (23) 

can be combined to yield 

  



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




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

x

dt
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0
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3coscos
)(

2
),(


   (24)                                                           

In continuing, to calculate the integral on the right 

hand side of eqn. (24) one may take into 

consideration that the antiderivative 

*,)()cos( RAdxtPAt    is given as 

1
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)2(

2
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)
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 (25)            

Since 0)()1(  tP n
 

Thus we can write out 

01 1
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Then, after the necessary algebraic manipulations 

eqn. (26) finally yields 


 
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Summarizing, one may infer that should the single - 

valued continuous functions introduced by eqns. 

(10) and (11) be replaced by their corresponding 

Taylor expansions, the “roughness” of their graphs 

drawn in a rectangular Cartesian frame of reference, 

can be reliably simulated in a deterministic manner 

as the polygonal approximation of the length L ( f , 

p). 

4  Discussion 

In the previous unit, a deterministic mathematical 

formulation for the roughness of a boundary of a 

mounted obstacle, which is inserted into an external 

incompressible viscous flow of  a Newtonian fluid 

was performed. To accommodate our mathematical 

analysis, we centred on the cross – sectional area of 

the obstacle which contains its centroidal axis and is 

perpendicular to the main flow direction. The 

boundary roughness of the obstacle was modeled as 

the polygonal approximation of the length of a 

function which was assumed beforehand to be of 

bounded variation.  This method could be further 

utilized and/or developed, by its implementation in 

parallel with Johnson’s mathematical formalism [24, 

25, 26], which concerns convex polyhedra with 

regular faces, since all convex functions satisfy 

Lipschitz condition and indeed are of bounded 

variation. In this context, one may take into account 

that the envelope of the cross - sectional area of any 

convex polyhedron constitutes the graph of a 

Lipschitz function. Thus, the cross – sectional area 

of any convex polyhedron, could be considered as 

the polygonal approximation of the length of a 

single – valued convex function. In addition, one 

may say that this proposed method could be 

improved and refined by taking into account some 

exact and / or approximate forms of the unit step 

function presented in Refs.[27, 28, 29] 

 

5 Conclusion 

The aim of this paper was to present a deterministic 

mathematical formulation for the boundary 

roughness of a mounted obstacle, which is inserted 

into an external viscous flow of a Newtonian fluid. 

In this context, the author considered the cross – 

sectional area of the obstacle which contains its 

center of gravity and also is perpendicular to the 

main flow direction. This area was assumed to have 

a predefined shape but random roughness. Then by 

means of a Mathematical Analysis viewpoint,   the 

boundary roughness of this area was simulated as 

the polygonal approximation of the length of a 

continuous function. This function was assumed to 
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be of bounded variation. The novelty of this work is 

that the introduced mathematical model is 

deterministic throughout and does not involve 

stochastic random processes. This method could be 

further exploited and utilized by its implementation 

together with Johnson’s theory for convex 

polyhedra with regular faces, since every convex 

function satisfies Lipschitz condition and evidently 

is of bounded variation. 
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